ThmDex – An index of mathematical definitions, results, and conjectures.
Formulation 0
Let $X \in \mathsf{Random}[0, \infty)$ be a D5452: Random unsigned real number such that
(i) \begin{equation} \mathbb{E} X < \infty \end{equation}
Let $\lambda \in (0, \infty)$ be a D5407: Positive real number.
Then \begin{equation} \mathbb{P}(X \geq \lambda) = o(\lambda^{-1}) \end{equation}
Proofs
Proof 0
Let $X \in \mathsf{Random}[0, \infty)$ be a D5452: Random unsigned real number such that
(i) \begin{equation} \mathbb{E} X < \infty \end{equation}
Let $\lambda \in (0, \infty)$ be a D5407: Positive real number.
This result is a particular case of R3262: Dilations of unsigned tail probability converge to zero. $\square$