ThmDex – An index of mathematical definitions, results, and conjectures.
Cardinality of finite cartesian products is invariant under insertion of parentheses
Formulation 0
Let $X_1, \ldots, X_{N + 1}$ each be a D11: Set such that
(i) $X : = \prod_{n = 1}^{N + 1} X_n$ and $Y : = (\prod_{n = 1}^N X_n) \times X_{N + 1}$ are each a D326: Cartesian product
Then \begin{equation} |X| = |Y| \end{equation}
Formulation 1
Let $X_1, \ldots, X_{N + 1}$ each be a D11: Set such that
(i) $\prod_{n = 1}^{N + 1} X_n$ and $(\prod_{n = 1}^N X_n) \times X_{N + 1}$ are each a D326: Cartesian product
Then \begin{equation} \left| \prod_{n = 1}^{N + 1} X_n \right| = \left| \left( \prod_{n = 1}^N X_n \right) \times X_{N + 1} \right| \end{equation}
Proofs
Proof 0
Let $X_1, \ldots, X_{N + 1}$ each be a D11: Set such that
(i) $X : = \prod_{n = 1}^{N + 1} X_n$ and $Y : = (\prod_{n = 1}^N X_n) \times X_{N + 1}$ are each a D326: Cartesian product
This result is a particular case of R1848: Bijection between parenthesis-sliced cartesian products. $\square$