ThmDex – An index of mathematical definitions, results, and conjectures.
Probability calculus expression for basic real conditional expectation given a countable partition of the sample space
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $E_0, E_1, E_2, \ldots \in \mathcal{F}$ are each an D1716: Event in $P$
(ii) $E_0, E_1, E_2, \ldots$ is a D5143: Set partition] of $\Omega$
(iii) $\mathcal{G} = \sigma \langle E_0, E_1, E_2, \ldots \rangle$ is a D318: Generated sigma-algebra on $\Omega$ with generators $E_0, E_1, E_2, \ldots$
(iv) $X : \Omega \to \mathbb{R}$ is a D3161: Random real number on $P$
(v) \begin{equation} \mathbb{E} |X| < \infty \end{equation}
Let $n \in \mathbb{N}$ be a D996: Natural number such that
(i) \begin{equation} \mathbb{P}(E_n) > 0 \end{equation}
Then \begin{equation} \forall \, \omega \in \Omega \left( \omega \in E_n \quad \implies \quad \mathbb{E}(X \mid \mathcal{G})(\omega) = \frac{\mathbb{E}(X I_{E_n})}{\mathbb{P}(E_n)} \right) \end{equation}
Proofs
Proof 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $E_0, E_1, E_2, \ldots \in \mathcal{F}$ are each an D1716: Event in $P$
(ii) $E_0, E_1, E_2, \ldots$ is a D5143: Set partition] of $\Omega$
(iii) $\mathcal{G} = \sigma \langle E_0, E_1, E_2, \ldots \rangle$ is a D318: Generated sigma-algebra on $\Omega$ with generators $E_0, E_1, E_2, \ldots$
(iv) $X : \Omega \to \mathbb{R}$ is a D3161: Random real number on $P$
(v) \begin{equation} \mathbb{E} |X| < \infty \end{equation}
Let $n \in \mathbb{N}$ be a D996: Natural number such that
(i) \begin{equation} \mathbb{P}(E_n) > 0 \end{equation}
We show that the basic real number $\frac{\mathbb{E}(X I_{E_n})}{\mathbb{P}(E_n)}$ equals the conditional expectation $\mathbb{E}(X \mid \mathcal{G})$ on the event $E_n$. If $\frac{\mathbb{E}(X I_{E_n})}{\mathbb{P}(E_n)}$ is understood as a constant map, then result R1177: Constant map is always measurable shows that it is measurable in $\mathcal{G}$, which is the first condition required of a conditional expectation.

Next, applying results
(i) R4652: Real-linearity of real expectation
(ii) R2089: Unsigned basic expectation is compatible with probability measure

we have \begin{equation} \int_{E_n} \frac{\mathbb{E}(X I_{E_n})}{\mathbb{P}(E_n)} \, d \mathbb{P} = \frac{\mathbb{E}(X I_{E_n})}{\mathbb{P}(E_n)} \int_{E_n} \, d \mathbb{P} = \frac{\mathbb{E}(X I_{E_n})}{\mathbb{P}(E_n)} \mathbb{P}(E_n) = \mathbb{E}(X I_{E_n}) = \int_{E_n} X \, d \mathbb{P} \end{equation} This finishes the proof. $\square$