Let $X_1, \ldots, X_N \in \text{Random}(\Omega \to \mathbb{R})$ each be a D3161: Random real number such that
Let $x \in \mathbb{R}$ be a D993: Real number.
(i) | $X_1, \ldots, X_N$ is an D3357: Identically distributed random collection |
Then
\begin{equation}
\mathbb{E} \left( \frac{1}{N} \sum_{n = 1}^N I_{\{ X_n \leq x \}} \right)
= \mathbb{P}(X_1 \leq x)
\end{equation}