Let $P = (\Omega, \mathcal{F}, \mathbb{P}_{\omega_0})$ be a D5672: Point probability space such that
(i) | $X : \Omega \to \mathbb{R}$ is a D3161: Random real number on $P$ |
(ii) | \begin{equation} \mathbb{E} |X| < \infty \end{equation} |
Then
\begin{equation}
\mathbb{E}_{\mathbb{P}_{\omega_0}} X
= X(\omega_0)
\end{equation}