ThmDex – An index of mathematical definitions, results, and conjectures.
Real GM-HM inequality
Formulation 0
Let $x_1, \dots, x_N \in (0, \infty)$ each be a D5407: Positive real number.
Then
(1) \begin{equation} \frac{1}{\frac{1}{N} \sum_{n = 1}^N \frac{1}{x_n}} \leq \left( \prod_{n = 1}^N x_n \right)^{\frac{1}{N}} \end{equation}
(2) \begin{equation} \frac{1}{\frac{1}{N} \sum_{n = 1}^N \frac{1}{x_n}} = \left( \prod_{n = 1}^N x_n \right)^{\frac{1}{N}} \quad \iff \quad \frac{1}{x_1} = \frac{1}{x_n} = \cdots = \frac{1}{x_N} \end{equation}
Subresults
R5185: Tight lower bound to a finite product of positive real numbers
Proofs
Proof 0
Let $x_1, \dots, x_N \in (0, \infty)$ each be a D5407: Positive real number.
This result is a particular case of R4665: Weighted real GM-HM inequality. $\square$