Let $X_1, \ldots, X_N \in \text{Random}(\Omega \to \mathbb{R})$ each be a D3161: Random real number such that
(i) | \begin{equation} \mathbb{E} |X_1|^2, \ldots, \mathbb{E} |X_N|^2 < \infty \end{equation} |
Then
(1) | \begin{equation} \text{Var} \left( \sum_{n = 1}^N X_n \right) = \sum_{n = 1}^N \sum_{m = 1}^N \text{Cov}(X_n, X_m) \end{equation} |
(2) | $\text{Var} \left( \sum_{n = 1}^N X_n \right) = \sum_{n = 1}^N \text{Var}(X_n)$ if $X_1, \ldots, X_N$ is an D2713: Independent random collection on $P$ |