Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
Let $p \in (0, \infty)$ be a D993: Real number.
(i) | $X : \Omega \to [0, \infty]$ is a D5101: Random unsigned basic number on $P$ |
Then
\begin{equation}
\mathbb{E} X^p
= \int^{\infty}_0 \mathbb{P}(X > t) p t^{t - 1} \, d t
\end{equation}