Let $f : [0, \infty) \to [0, \infty)$ be an D4367: Unsigned real function such that
(i) | $f$ is a D1760: Riemann integrable real function on $[0, b]$ for every $b \in [0, \infty)$ |
(ii) | \begin{equation} \lim_{t \to \infty} f(t) = 0 \end{equation} |
Then
\begin{equation}
\lim_{x \to \infty}
\frac{1}{x} \int^x_0 f(t) \, d t
= 0
\end{equation}