ThmDex – An index of mathematical definitions, results, and conjectures.
Result R4765 on D5612: Euclidean real set
Reflection preserves euclidean real subset relation
Formulation 0
Let $E, F \subseteq \mathbb{R}^N$ each be a D5612: Euclidean real set such that
(i) \begin{equation} E \subseteq F \end{equation}
Then \begin{equation} - E \subseteq - F \end{equation}
Proofs
Proof 0
Let $E, F \subseteq \mathbb{R}^N$ each be a D5612: Euclidean real set such that
(i) \begin{equation} E \subseteq F \end{equation}
If $- E$ is empty, then the claim is a consequence of result R7: Empty set is subset of every set, so assume that $- E \neq \emptyset$. If $x \in - E$, then $x = - e$ for some $e \in E$. Since $E \subseteq F$, then $e \in F$ and thus $x = - e \in - F$. Since $x \in - E$ was arbitrary, we are done. $\square$