ThmDex – An index of mathematical definitions, results, and conjectures.
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $Y : \Omega \to \Xi$ is a D202: Random variable on $P$
(ii) $X : \Omega \to \mathbb{R}$ is a D3161: Random real number on $P$
(iii) \begin{equation} \mathbb{E} |X|^2 < \infty \end{equation}
Then \begin{equation} \text{Var}(X \mid Y) = \mathbb{E}(X^2 \mid Y) - (\mathbb{E}(X \mid Y))^2 \end{equation}
Proofs
Proof 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $Y : \Omega \to \Xi$ is a D202: Random variable on $P$
(ii) $X : \Omega \to \mathbb{R}$ is a D3161: Random real number on $P$
(iii) \begin{equation} \mathbb{E} |X|^2 < \infty \end{equation}
This result is a particular case of R3562: Real conditional variance partition into conditional moments. $\square$