Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) | $X : \Omega \to \Xi_X$ and $Y : \Omega \to \Xi_Y$ are each a D202: Random variable on $P$ |
(ii) | $\{ X \in E \}, \{ Y \in F \} \in \mathcal{F}$ are each an D1716: Event in $P$ |
(iii) | \begin{equation} \mathbb{P}(Y \in F), \mathbb{P}(Y \in F^{\complement}) > 0 \end{equation} |
Then
\begin{equation}
\mathbb{P}(X \in E)
= \mathbb{P}(X \in E \mid Y \in F) \mathbb{P}(Y \in F) + \mathbb{P}(X \in E \mid Y \not\in F) \mathbb{P}(Y \not\in F)
\end{equation}