ThmDex – An index of mathematical definitions, results, and conjectures.
Law of total probability for complement partition in terms of random variables
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $X : \Omega \to \Xi_X$ and $Y : \Omega \to \Xi_Y$ are each a D202: Random variable on $P$
(ii) $\{ X \in E \}, \{ Y \in F \} \in \mathcal{F}$ are each an D1716: Event in $P$
(iii) \begin{equation} \mathbb{P}(Y \in F), \mathbb{P}(Y \in F^{\complement}) > 0 \end{equation}
Then \begin{equation} \mathbb{P}(X \in E) = \mathbb{P}(X \in E \mid Y \in F) \mathbb{P}(Y \in F) + \mathbb{P}(X \in E \mid Y \not\in F) \mathbb{P}(Y \not\in F) \end{equation}
Proofs
Proof 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $X : \Omega \to \Xi_X$ and $Y : \Omega \to \Xi_Y$ are each a D202: Random variable on $P$
(ii) $\{ X \in E \}, \{ Y \in F \} \in \mathcal{F}$ are each an D1716: Event in $P$
(iii) \begin{equation} \mathbb{P}(Y \in F), \mathbb{P}(Y \in F^{\complement}) > 0 \end{equation}
This result is a particular case of R3642: Law of total probability for complement partition. $\square$