ThmDex – An index of mathematical definitions, results, and conjectures.
Conditional simple entropy with respect to itself
Formulation 0
Let $X : \Omega \to \mathcal{X}$ be a D5723: Simple random variable.
Let $a \in (0, \infty) \setminus \{ 1 \}$ be a D5407: Positive real number.
Then \begin{equation} H_a(X \mid X) = 0 \end{equation}
Proofs
Proof 0
Let $X : \Omega \to \mathcal{X}$ be a D5723: Simple random variable.
Let $a \in (0, \infty) \setminus \{ 1 \}$ be a D5407: Positive real number.
Using results
(i) R4847: Probability of event conditional on itself
(ii) R4828: Logarithm of one is zero

\begin{equation} \begin{split} H_a(X \mid X) & = - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbb{P}(X = x, X = y) \log_a \mathbb{P}(X = x \mid X = y) \\ & = - \sum_{x \in \mathcal{X}} \mathbb{P}(X = x, X = x) \log_a \mathbb{P}(X = x \mid X = x) \\ & = - \sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_a 1 \\ & = - \sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \cdot 0 \\ \end{split} \end{equation} $\square$