Let $A \in \mathbb{R}^{N \times N}$ be a D6160: Real square matrix such that
(i) | \begin{equation} \text{det} A \neq 0 \end{equation} |
(ii) | $A^{-1}$ is an D2089: Inverse matrix for $A$ |
Then
\begin{equation}
A^{-1}
=
\frac{1}{\text{Det} A}
\text{Adj} A
\end{equation}