ThmDex – An index of mathematical definitions, results, and conjectures.
Real log-sum-exp method
Formulation 0
Let $\exp$ be the D1932: Standard natural real exponential function.
Let $\log$ be the D865: Standard natural real logarithm function.
Let $x_1, \ldots, x_N \in \mathbb{R}$ each be a D993: Real number such that
(i) \begin{equation} \tau : = \max(x_1, \ldots, x_N) \end{equation}
Then \begin{equation} \log \sum_{n = 1}^N \exp(x_n) = \tau + \log \sum_{n = 1}^N \exp(x_n - \tau) \end{equation}
Proofs
Proof 0
Let $\exp$ be the D1932: Standard natural real exponential function.
Let $\log$ be the D865: Standard natural real logarithm function.
Let $x_1, \ldots, x_N \in \mathbb{R}$ each be a D993: Real number such that
(i) \begin{equation} \tau : = \max(x_1, \ldots, x_N) \end{equation}
This result is a particular case of R4871: Translation property of the standard real log-sum-exp function. $\square$