ThmDex – An index of mathematical definitions, results, and conjectures.
Derivative function for standard natural real logarithm function
Formulation 0
Let $\log : (0, \infty) \to \mathbb{R}$ be the D865: Standard natural real logarithm function.
Then \begin{equation} \frac{d \log(x)}{d x} = \frac{1}{x} \end{equation}
Proofs
Proof 0
Let $\log : (0, \infty) \to \mathbb{R}$ be the D865: Standard natural real logarithm function.
This result is a particular case of R4905: Derivative for standard natural real logarithm function. $\square$