Let $X \in \text{Random}(\mathbb{N})$ be a D5216: Random natural number such that
(i) | \begin{equation} \zeta(3) : = \sum_{n = 1}^{\infty} \frac{1}{n^3} \end{equation} |
(ii) | \begin{equation} \forall \, n \in \{ 1, 2, 3, \ldots \} : \mathbb{P}(X = n) = \frac{1}{n^3} \zeta(3) \end{equation} |
Then
(1) | \begin{equation} \mathbb{E} X = \frac{\pi^2}{6} \zeta(3) < \infty \end{equation} |
(2) | \begin{equation} \text{Var} X = \infty \end{equation} |