ThmDex – An index of mathematical definitions, results, and conjectures.
Complex conjugate of a product of two complex column matrices
Formulation 0
Let $z, w \in \mathbb{C}^{N \times 1}$ each be a D5689: Complex column matrix.
Then \begin{equation} \overline{z^T w} = \overline{z}^T \overline{w} \end{equation}
Proofs
Proof 0
Let $z, w \in \mathbb{C}^{N \times 1}$ each be a D5689: Complex column matrix.
Using results
(i) R5298: Complex conjugatation is an additive operation
(ii) R5297: Complex conjugate of a product of two complex numbers

we have \begin{equation} \overline{z^T w} = \overline{\sum_{n = 1}^N z_n w_n} = \sum_{n = 1}^N \overline{z_n w_n} = \sum_{n = 1}^N \overline{z}_n \overline{w}_n = \overline{z}^T \overline{w} \end{equation} $\square$