ThmDex – An index of mathematical definitions, results, and conjectures.
Factorization need not preserve equality in distribution
Formulation 0
Let $X, Y \in \text{Bernoulli}(1/2)$ each be a D3999: Standard Bernoulli random boolean number.
Then
(1) \begin{equation} X \overset{d}{=} Y \end{equation}
(2) \begin{equation} 2 X \overset{d}{\neq} X + Y \end{equation}
Proofs
Proof 0
Let $X, Y \in \text{Bernoulli}(1/2)$ each be a D3999: Standard Bernoulli random boolean number.
The first claim is clear. For the second, consider what values each side can attain. The random variable $2 X$ can attain values only in the set $\{ 0, 2 \}$, while the random variable $X + Y$ can attain values in the set $\{ 0, 1, 2 \}$. $\square$