Let $I_N \in \mathbb{R}^{N \times N}$ be a D5621: Real identity matrix such that
(i) | $e_1, \ldots, e_N \in \mathbb{R}^{N \times 1}$ are each a D5200: Real column matrix |
(ii) | \begin{equation} I_N = \begin{bmatrix} e_1 & e_2 & \cdots & e_N \end{bmatrix} \end{equation} |
Then
\begin{equation}
\text{Span} \langle e_1, \ldots, e_N \rangle
= \mathbb{R}^{N \times 1}
\end{equation}