ThmDex – An index of mathematical definitions, results, and conjectures.
Result R5505 on D5942: Real cofactor matrix
Cofactor matrix for a 2-by-2 real square matrix
Formulation 0
Let $A \in \mathbb{R}^{2 \times 2}$ be a D6160: Real square matrix such that
(i) \begin{equation} A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{equation}
Then \begin{equation} \text{Cof} A = \begin{bmatrix} d & - c \\ - b & a \end{bmatrix} \end{equation}
Proofs
Proof 0
Let $A \in \mathbb{R}^{2 \times 2}$ be a D6160: Real square matrix such that
(i) \begin{equation} A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{equation}
The cofactors of $A$ are \begin{equation} \begin{split} C_{1, 1} & = (-1)^{1 + 1} \text{Det} \begin{bmatrix} d \end{bmatrix} = d \\ C_{1, 2} & = (-1)^{1 + 2} \text{Det} \begin{bmatrix} c \end{bmatrix} = -c \\ C_{2, 1} & = (-1)^{2 + 1} \text{Det} \begin{bmatrix} b \end{bmatrix} = -b \\ C_{2, 2} & = (-1)^{2 + 2} \text{Det} \begin{bmatrix} a \end{bmatrix} = a \\ \end{split} \end{equation} Thus, the cofactor matrix is \begin{equation} \text{Cof} A = \begin{bmatrix} C_{1, 1} & C_{1, 2} \\ C_{2, 1} & C_{2, 2} \end{bmatrix} = \begin{bmatrix} d & - c \\ - b & a \end{bmatrix} \end{equation} $\square$