ThmDex – An index of mathematical definitions, results, and conjectures.
Complex square matrix which has a zero column or a zero row has determinant zero
Formulation 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
(i) $a_1, \ldots, a_N \in \mathbb{C}^{N \times 1}$ are each a D5689: Complex column matrix
(ii) $b_1, \ldots, b_N \in \mathbb{C}^{1 \times N}$ are each a D5688: Complex row matrix
(iii) \begin{equation} A = \begin{bmatrix} a_1 & a_2 & \cdots & a_N \end{bmatrix} \end{equation}
(iv) \begin{equation} A = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix} \end{equation}
Then
(1) \begin{equation} a_1 = \boldsymbol{0} \text{ or } a_2 = \boldsymbol{0} \text{ or } \cdots \text{ or } a_N = \boldsymbol{0} \quad \implies \quad \text{Det} A = 0 \end{equation}
(2) \begin{equation} b_1 = \boldsymbol{0} \text{ or } b_2 = \boldsymbol{0} \text{ or } \cdots \text{ or } b_N = \boldsymbol{0} \quad \implies \quad \text{Det} A = 0 \end{equation}
Subresults
R5510: Real square matrix which has a zero column or a zero row has determinant zero
Proofs
Proof 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
(i) $a_1, \ldots, a_N \in \mathbb{C}^{N \times 1}$ are each a D5689: Complex column matrix
(ii) $b_1, \ldots, b_N \in \mathbb{C}^{1 \times N}$ are each a D5688: Complex row matrix
(iii) \begin{equation} A = \begin{bmatrix} a_1 & a_2 & \cdots & a_N \end{bmatrix} \end{equation}
(iv) \begin{equation} A = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix} \end{equation}
If $N = 1$, the case is clear, so we can assume that $N \geq 2$. Suppose that $a_k = \boldsymbol{0}$ for some $k \in \{ 1, \ldots, N \}$. Using R5517: Cofactor partition for a complex square matrix, we have \begin{equation} \text{Det} A = \sum_{n = 1}^N A_{k, n} C_{k, n} = \sum_{n = 1}^N 0 \cdot C_{k, n} = 0 \end{equation} If instead $b_k = \boldsymbol{0}$, then the same result implies \begin{equation} \text{Det} A = \sum_{n = 1}^N A_{n, k} C_{n, k} = \sum_{n = 1}^N 0 \cdot C_{n, k} = 0 \end{equation} Since $k \in \{ 1, \ldots, N \}$ was arbitrary, we are done. $\square$