ThmDex – An index of mathematical definitions, results, and conjectures.
Characteristic polynomial for a complex diagonal matrix of constant diagonal
Formulation 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
(i) $I_N \in \mathbb{C}^{N \times N}$ be a D5699: Complex identity matrix
(ii) $c \in \mathbb{C}$ is a D1207: Complex number
(iii) \begin{equation} A = c I_N \end{equation}
Let $z \in \mathbb{C}$ be a D1207: Complex number.
Then \begin{equation} \text{Det}(z I_N - A) = (z - c)^N \end{equation}
Formulation 1
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
(i) $c \in \mathbb{C}$ is a D1207: Complex number
(ii) \begin{equation} A = \begin{bmatrix} c & 0 & \cdots & 0 \\ 0 & c & \vdots & \vdots \\ \vdots & \cdots & \ddots & \vdots \\ 0 & \cdots & \cdots & c \end{bmatrix} \end{equation}
Let $z \in \mathbb{C}$ be a D1207: Complex number.
Then \begin{equation} \text{Det}(z I_N - A) = (z - c)^N \end{equation}
Subresults
R4962: Characteristic polynomial for a complex identity matrix
Proofs
Proof 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
(i) $c \in \mathbb{C}$ is a D1207: Complex number
(ii) \begin{equation} A = \begin{bmatrix} c & 0 & \cdots & 0 \\ 0 & c & \vdots & \vdots \\ \vdots & \cdots & \ddots & \vdots \\ 0 & \cdots & \cdots & c \end{bmatrix} \end{equation}
Let $z \in \mathbb{C}$ be a D1207: Complex number.
This result is a particular case of R5559: Characteristic polynomial for a complex diagonal matrix. $\square$