Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
Let $z \in \mathbb{C}$ be a D1207: Complex number.
(i) | $I_N \in \mathbb{C}^{N \times N}$ be a D5699: Complex identity matrix |
(ii) | $c \in \mathbb{C}$ is a D1207: Complex number |
(iii) | \begin{equation} A = c I_N \end{equation} |
Then
\begin{equation}
\text{Det}(z I_N - A)
= (z - c)^N
\end{equation}