Let $f : \mathbb{C} \to \mathbb{C}$ be a D4312: Complex polynomial function such that
(i) | $a, b, c \in \mathbb{C}$ are each a D1207: Complex number |
(ii) | \begin{equation} f(z) = a z^2 + (a b + a c) z + a b c \end{equation} |
Then
\begin{equation}
f(z)
= a (z + b) (z + c)
\end{equation}