ThmDex – An index of mathematical definitions, results, and conjectures.
Strong fundamental theorem of complex algebra for a quadratic complex polynomial
Formulation 0
Let $f : \mathbb{C} \to \mathbb{C}$ be a D4312: Complex polynomial function such that
(i) $a, b, c \in \mathbb{C}$ are each a D1207: Complex number
(ii) \begin{equation} f(z) = a z^2 + (a b + a c) z + a b c \end{equation}
Then \begin{equation} f(z) = a (z + b) (z + c) \end{equation}
Proofs
Proof 0
Let $f : \mathbb{C} \to \mathbb{C}$ be a D4312: Complex polynomial function such that
(i) $a, b, c \in \mathbb{C}$ are each a D1207: Complex number
(ii) \begin{equation} f(z) = a z^2 + (a b + a c) z + a b c \end{equation}
This result is a particular case of R4112: Strong fundamental theorem of complex algebra. $\square$