ThmDex – An index of mathematical definitions, results, and conjectures.
Result R5673 on D1207: Complex number
Complex arithmetic expression for the multiplicative inverse of a complex number
Formulation 0
Let $z = (x, y) \in \mathbb{C}$ be a D1207: Complex number such that
(i) \begin{equation} z \neq (0, 0) \end{equation}
(ii) \begin{equation} w : = \frac{(x, -y)}{x^2 + y^2} \end{equation}
Then \begin{equation} z w = w z = 1 \end{equation}
Formulation 1
Let $z = x + i y \in \mathbb{C}$ be a D1207: Complex number such that
(i) \begin{equation} z \neq 0 \end{equation}
(ii) \begin{equation} w : = \frac{x - i y}{x^2 + y^2} \end{equation}
Then \begin{equation} z w = w z = 1 \end{equation}
Proofs
Proof 0
Let $z = x + i y \in \mathbb{C}$ be a D1207: Complex number such that
(i) \begin{equation} z \neq 0 \end{equation}
(ii) \begin{equation} w : = \frac{x - i y}{x^2 + y^2} \end{equation}
We have \begin{equation} z w = \frac{(x + i y) (x - i y)}{x^2 + y^2} = \frac{(x^2 - i x y + i x y - i^2 y^2)}{x^2 + y^2} = \frac{x^2 + y^2}{x^2 + y^2} = 1 \end{equation} and an equivalent result holds for $z w$. $\square$