Let $P = (\mathbb{N}, {\leq})$ be the D1095: Ordered set of natural numbers such that
(i) | $X$ is a D11: Set |
(ii) | \begin{equation} 0 \in X \subseteq \mathbb{N} \end{equation} |
(iii) | \begin{equation} \forall \, n \in \mathbb{N} \left( n \in X \quad \implies \quad n + 1 \in X \right) \end{equation} |
Then
\begin{equation}
X
= \mathbb{N}
\end{equation}