ThmDex – An index of mathematical definitions, results, and conjectures.
Principle of weak mathematical induction on the natural numbers
Formulation 0
Let $P = (\mathbb{N}, {\leq})$ be the D1095: Ordered set of natural numbers such that
(i) $X$ is a D11: Set
(ii) \begin{equation} 0 \in X \subseteq \mathbb{N} \end{equation}
(iii) \begin{equation} \forall \, n \in \mathbb{N} \left( n \in X \quad \implies \quad n + 1 \in X \right) \end{equation}
Then \begin{equation} X = \mathbb{N} \end{equation}
Subresults
R5104: Proof by principle of weak mathematical induction on the natural numbers
Proofs
Proof 0
Let $P = (\mathbb{N}, {\leq})$ be the D1095: Ordered set of natural numbers such that
(i) $X$ is a D11: Set
(ii) \begin{equation} 0 \in X \subseteq \mathbb{N} \end{equation}
(iii) \begin{equation} \forall \, n \in \mathbb{N} \left( n \in X \quad \implies \quad n + 1 \in X \right) \end{equation}
This result is a particular case of R796: Principle of weak mathematical induction with $a : = 0$. $\square$