Let $M = (\mathbb{R}^n, \mathcal{L}, \mu)$ be a D1744: Lebesgue measure space.
Let $\mathfrak{L}^1 = \mathfrak{L}^1(M)$ be the D2401: Set of absolutely integrable functions on $M$.
Let $\mathfrak{L}^1 = \mathfrak{L}^1(M)$ be the D2401: Set of absolutely integrable functions on $M$.
Then
\begin{equation}
\forall \, f, g \in \mathfrak{L}^1 : f * g = g * f
\end{equation}