Let $M = (\mathbb{R}^D, \mathcal{L}, \mu)$ be a D1744: Lebesgue measure space such that
Let $\lambda \in \mathbb{C}$ be a D1207: Complex number.
(i) | $f, g : \mathbb{R}^D \to \mathbb{C}$ are each an D1921: Absolutely integrable function on $M$ |
Then
\begin{equation}
(\lambda f) * g
= \lambda (f * g)
\end{equation}