A D11: Set $E$ is a

**measurable set**in $M$ if and only if \begin{equation} E \in \mathcal{F} \end{equation}

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Subset

▾ Power set

▾ Hyperpower set sequence

▾ Hyperpower set

▾ Hypersubset

▾ Subset algebra

▾ Subset structure

▾ Measurable space

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Subset

▾ Power set

▾ Hyperpower set sequence

▾ Hyperpower set

▾ Hypersubset

▾ Subset algebra

▾ Subset structure

▾ Measurable space

Formulation 0

Let $M = (X, \mathcal{F})$ be a D1108: Measurable space.

A D11: Set $E$ is a**measurable set** in $M$ if and only if
\begin{equation}
E \in \mathcal{F}
\end{equation}

A D11: Set $E$ is a

Child definitions