Let $X$ be a D11: Set.
A D11: Set $E$ is a subset of $X$ if and only if
\begin{equation}
\forall \, x \in E : x \in X
\end{equation}
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▶ | D80: Power set |
▶ | D101: Proper subset |
▶ | D954: Superset |
▶ |
Convention 0
(Notation for subset relation)
If $X$ is a D11: Set and $E$ is a D78: Subset of $X$, we denote this by $E \subseteq X$.
|