A D11: Set $E$ is a proper subset of $X$ if and only if
(1) | $\forall \, x \in E : x \in X$ | (D78: Subset) |
(2) | $E \neq X$ |
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▼ | Subset |
(1) | $\forall \, x \in E : x \in X$ | (D78: Subset) |
(2) | $E \neq X$ |
▶ |
Convention 0
(Notation for proper subset relation)
If $X$ is a D11: Set and $E$ is a D101: Proper subset of $X$, we denote this by $E \subset X$.
|