Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Function
▾
Unsigned function
▾
Unsigned Realll func function
▾
Complex euclidean P-length function
▾
Euclidean P-length function
▾
Euclidean length function
Complex modulus function
Formulation 1
Let $\mathbb{C} = \mathbb{R}^2$ be the
D372: Set of complex numbers
.
The
complex modulus function
is the
D4365: Unsigned Realll func function
\begin{equation} \mathbb{C} \to [0, \infty), \quad (x, y) \mapsto \sqrt{x^2 + y^2} \end{equation}