Let $X_j$ be a D11: Set for each $j \in J$.
The disjoint union of $X = \{ X_j \}_{j \in J}$ is the D11: Set
\begin{equation}
\coprod_{j \in J} X_j
: = \bigcup_{j \in J} \{ (x, j) :x \in X_j \}
\end{equation}
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▼ | Collection of sets |
▼ | Set union |