The

**union**of $E = \{ E_j \}_{j \in J}$ is the D11: Set \begin{equation} \bigcup_{j \in J} E_j : = \{ x \mid \exists \, j \in J : x \in E_j \} \end{equation}

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Collection of sets

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Collection of sets

Dual definition

Child definitions

Results

» R4152: