ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Subset ▼ Power set ▼ Hyperpower set sequence ▼ Hyperpower set ▼ Hypersubset ▼ Subset algebra ▼ Boolean algebra ▼ Sigma-algebra
Definition D1729
Pushforward sigma-algebra

Let $M_j = (X_j, \mathcal{F}_j)$ be a D1108: Measurable space for each $j \in J$.
Let $f_j : X_j \to Y$ be a D18: Map for each $j \in J$.
The pushforward sigma-algebra on $Y$ with respect to $f = \{ f_j \}_{j \in J}$ and $M = \{ M_j \}_{j \in J}$ is the D11: Set $$\{ E \subseteq Y \mid \forall \, j \in J : f^{-1}_j(E) \in \mathcal{F}_j \}$$

Let $M_j = (X_j, \mathcal{F}_j)$ be a D1108: Measurable space for each $j \in J$.
Let $f_j : X_j \to Y$ be a D18: Map for each $j \in J$.
The pushforward sigma-algebra on $Y$ with respect to $f = \{ f_j \}_{j \in J}$ and $M = \{ M_j \}_{j \in J}$ is the D11: Set $$\bigcap_{j \in J} \{ E \subseteq Y \mid f^{-1}_j(E) \in \mathcal{F}_j \}$$