ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Boolean algebra
Sigma-algebra
Set of sigma-algebras
Generated sigma-algebra
Sigma-algebra generating set
Pullback sigma-algebra generating set
Definition D1730
Pullback sigma-algebra
Formulation 0
Let $M_j = (Y_j, \mathcal{F}_j)$ be a D1108: Measurable space for each $j \in J$ such that
(i) $f_j : X \to Y_j$ is a D18: Map from $X$ to $Y_j$ for each $j \in J$
The pullback sigma-algebra on $X$ with respect to $f = \{ f_j \}_{j \in J}$ and $M = \{ M_j \}_{j \in J}$ is the D11: Set \begin{equation} \sigma \left\langle \bigcup_{j \in J} \left\{ f^{-1}_j(E) : E \in \mathcal{F}_j \right\} \right\rangle \end{equation}
Results
R2548: Constant map pulls back a bottom sigma-algebra