(i) | ${\sim} \subseteq X \times X$ is an D178: Equivalence relation on $X$ |
(ii) | \begin{equation} \forall \, x \in X : {\sim}(x) : = \{ y : (x, y) \in {\sim} \} \end{equation} |
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▼ | Binary cartesian set product |
▼ | Binary relation |
▼ | Relation class |
▼ | Set of relation classes |
(i) | ${\sim} \subseteq X \times X$ is an D178: Equivalence relation on $X$ |
(ii) | \begin{equation} \forall \, x \in X : {\sim}(x) : = \{ y : (x, y) \in {\sim} \} \end{equation} |
(i) | ${\sim} \subseteq X \times X$ is an D178: Equivalence relation on $X$ |
(i) | ${\sim} \subseteq X \times X$ is an D178: Equivalence relation on $X$ |
(ii) | \begin{equation} \forall \, x \in X : [x]_{\sim} : = \{ y : (x, y) \in {\sim} \} \end{equation} |
▶ | D181: Canonical set epimorphism |