ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Binary endorelation
Preordering relation
Partial ordering relation
Partially ordered set
Definition D1885
Upward enclosed set
Formulation 0
Let $P = (X, {\preceq})$ be a D1103: Partially ordered set.
A D11: Set $E \subseteq X$ is upward enclosed in $P$ if and only if \begin{equation} \forall \, e \in E : \forall \, x \in X \left( (e, x) \in {\preceq} \quad \implies \quad x \in E \right) \end{equation}
Formulation 1
Let $P = (X, {\preceq})$ be a D1103: Partially ordered set.
A D11: Set $E \subseteq X$ is upward enclosed in $P$ if and only if \begin{equation} \forall \, e \in E : \forall \, x \in X \left( e \preceq x \quad \implies \quad x \in E \right) \end{equation}