ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Binary cartesian set product ▼ Binary relation ▼ Binary endorelation ▼ Preordering relation
Definition D286
Partial ordering relation

A D4: Binary relation ${\preceq} \subseteq X \times X$ on $X$ is a partial ordering relation on $X$ if and only if
 (1) $\forall \, x \in X : (x, x) \in {\preceq}$ (D287: Reflexive binary relation) (2) $\forall \, x, y, z \in X \, ((x, y), (y, z) \in {\preceq} \quad \implies \quad (x, z) \in {\preceq})$ (D288: Transitive binary relation) (3) $\forall \, x, y \in X \, ((x, y), (y, x) \in {\preceq} \quad \implies \quad x = y)$ (D289: Antisymmetric binary relation)

A D4: Binary relation ${\preceq} \subseteq X \times X$ is a partial ordering relation on $X$ if and only if
 (1) $\forall \, x \in X : x \preceq x$ (D287: Reflexive binary relation) (2) $\forall \, x, y, z \in X \, (x \preceq y \preceq z \quad \implies \quad x \preceq z)$ (D288: Transitive binary relation) (3) $\forall \, x, y \in X \, (x \preceq y \text{ and } y \preceq x \quad \implies \quad x = y)$ (D289: Antisymmetric binary relation)
Children
 ▶ Chain ▶ Lattice order relation ▶ Partially ordered set