ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Binary endorelation
Preordering relation
Partial ordering relation
Partially ordered set
Definition D1896
Upper enclosure
Formulation 0
Let $P = (X, {\preceq})$ be a D1103: Partially ordered set.
The upper enclosure of $E \subseteq X$ in $P$ is the D11: Set \begin{equation} {\uparrow} E : = \bigcup_{e \in E} \{ x \in X : e \preceq x \} \end{equation}
Formulation 1
Let $P = (X, {\preceq})$ be a D1103: Partially ordered set.
The upper enclosure of $E \subseteq X$ in $P$ is the D11: Set \begin{equation} {\uparrow} E : = \{ x \in X : (\exists \, e \in E) e \preceq x \} \end{equation}