Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Inverse binary relation
Inverse map
Formulation 1
Let $f : X \to Y$ be a D18: Map.
A D18: Map $g : Y \to X$ is an inverse of $f$ if and only if
(1) \begin{equation} \forall \, x \in X : g(f(x)) = x \end{equation} (D525: Left inverse map)
(2) \begin{equation} \forall \, y \in Y : f(g(y)) = x \end{equation} (D526: Right inverse map)
Child definitions
» D976: Invertible map
» D702: Involution
Results
» R4542: Map is inverse to its inverse
» R4543: Map inverse is invertible