An D548: Ordered pair $B_S = (X \times Y, S)$ is an

**inverse**of $B$ if and only if \begin{equation} S = \{ (y, x) : (x, y) \in R \} \end{equation}

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

Formulation 0

Let $B_R = (X \times Y, R)$ be a D4: Binary relation.

An D548: Ordered pair $B_S = (X \times Y, S)$ is an**inverse** of $B$ if and only if
\begin{equation}
S = \{ (y, x) : (x, y) \in R \}
\end{equation}

An D548: Ordered pair $B_S = (X \times Y, S)$ is an

Child definitions