Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
Inverse binary relation
Formulation 0
Let $B_R = (X \times Y, R)$ be a
D4: Binary relation
.
An
D548: Ordered pair
$B_S = (X \times Y, S)$ is an
inverse
of $B$ if and only if \begin{equation} S = \{ (y, x) : (x, y) \in R \} \end{equation}
Child definitions
»
D216: Inverse map