ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Semigroup
Definition D265
Monoid
Formulation 0
A D263: Groupoid $G = (X, +)$ is a monoid if and only if
(1) \begin{equation} \forall \, x, y, z \in X : (x + y) + z = x + (y + z) \end{equation}
(2) \begin{equation} \exists \, 0_G \in X : \forall \, x \in X : 0_G + x = x + 0_G = x \end{equation}
Formulation 1
A D263: Groupoid $G = (X, \times)$ is a monoid if and only if
(1) \begin{equation} \forall \, x, y, z \in X : (x y) z = x (y z) \end{equation}
(2) \begin{equation} \exists \, 1_G \in X : \forall \, x \in X : 1_G x = x 1_G = x \end{equation}
Formulation 2
A D263: Groupoid $G = (X, f)$ is a monoid if and only if
(1) \begin{equation} \forall \, x, y, z \in X : f(f(x, y), z) = f(x, f(y, z)) \end{equation}
(2) \begin{equation} \exists \, I \in X : \forall \, x \in X : f(I, x) = f(x, I) = x \end{equation}
Formulation 3
An D21: Algebraic structure $G = (X, \times)$ is a monoid if and only if
(1) \begin{equation} \forall \, x, y \in X : x y \in X \end{equation}
(2) \begin{equation} \forall \, x, y, z \in X : (x y) z = x (y z) \end{equation}
(3) \begin{equation} \exists \, 1_G \in X : \forall \, x \in X : 1_G x = x 1_G = x \end{equation}
Children
D22: Group
D989: Map kernel
D676: Map support