(1) | ∀x,y∈X:x+y∈X |
(2) | ∀x,y,z∈X:(x+y)+z=x+(y+z) |
(3) | ∃0G∈X:∀x∈X:0G+x=x+0G=x |
(4) | ∀x∈X:∃−x∈X:−x+x=x+(−x)=0G |
(1) | ∀x,y∈X:x+y∈X |
(2) | ∀x,y,z∈X:(x+y)+z=x+(y+z) |
(3) | ∃0G∈X:∀x∈X:0G+x=x+0G=x |
(4) | ∀x∈X:∃−x∈X:−x+x=x+(−x)=0G |
(1) | ∀x,y∈X:xy∈X |
(2) | ∀x,y,z∈X:(xy)z=x(yz) |
(3) | ∃1G∈X:∀x∈X:1Gx=x1G=x |
(4) | ∀x∈X:∃x−1∈X:x−1x=xx−1=1G |
▶ | D23: Abelian group |
▶ | D1082: Finite group |
▶ | D1301: Generated subgroup |
▶ | D1568: P-group |
▶ | D1240: Trivial group |