Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Operation
▾
N-operation
▾
Binary operation
▾
Enclosed binary operation
▾
Groupoid
▾
Semigroup
▾
Monoid
▾
Group
P-group
Formulation 0
Let $G$ be a
D22: Group
.
Let $p$ be a
D571: Prime integer
.
Then $G$ is a
P-group
with respect to $p$ if and only if \begin{equation} \forall \, g \in G : \exists \, n \in \mathbb{N} : |g| = p^n \end{equation}
Child definitions
»
D1613: P-subgroup