**confounder digraph**if and only if

(1) | $X = \{ x, y, z \}$ |

(2) | $\mathcal{E} = \{ (z, x), (z, y) \}$ |

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Binary endorelation

▾ Digraph

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Binary endorelation

▾ Digraph

Formulation 0

A D2696: Digraph $G = (X, \mathcal{E})$ is a **confounder digraph** if and only if

(1) | $X = \{ x, y, z \}$ |

(2) | $\mathcal{E} = \{ (z, x), (z, y) \}$ |