Let $f : X \to Y$ be a D18: Map.

The

**strict supergraph**of $f$ with respect to $P$ is the D11: Set \begin{equation} \{ (x, y) \in X \times Y : y \succ f(x) \} \end{equation}

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Map graph

▾ Map supergraph

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Map graph

▾ Map supergraph

Formulation 0

Let $P = (Y, {\preceq})$ be a D1103: Partially ordered set.

Let $f : X \to Y$ be a D18: Map.

The**strict supergraph** of $f$ with respect to $P$ is the D11: Set
\begin{equation}
\{ (x, y) \in X \times Y : y \succ f(x) \}
\end{equation}

Let $f : X \to Y$ be a D18: Map.

The

Also known as

Map strict epigraph