The

**canonical projection**on $X$ with respect to $i \in J$ is the D18: Map \begin{equation} X \to X_i, \quad \{ x_j \}_{j \in J} \mapsto x_i \end{equation}

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Cartesian product

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Cartesian product

Formulation 0

Let $X = \prod_{j \in J} X_j$ be a D326: Cartesian product.

The**canonical projection** on $X$ with respect to $i \in J$ is the D18: Map
\begin{equation}
X \to X_i, \quad
\{ x_j \}_{j \in J} \mapsto x_i
\end{equation}

The

Results