(i) | $E \in \mathcal{F}$ is an D1716: Event in $P$ |
(ii) | \begin{equation} \mathbb{P}(E^{\complement}) > 0 \end{equation} |
(i) | $E \in \mathcal{F}$ is an D1716: Event in $P$ |
(ii) | \begin{equation} \mathbb{P}(E^{\complement}) > 0 \end{equation} |
▶▶▶ |
Comment 0
Result R3719: Probability of complement event shows that $\mathbb{P}(E^{\complement}) = 1 - \mathbb{P}(E)$. Thus, an equvalent assumption to (ii) is that $\mathbb{P}(E) < 1$.
|