Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Subset
▾
Power set
▾
Hyperpower set sequence
▾
Hyperpower set
▾
Hypersubset
▾
Subset algebra
▾
Subset structure
▾
Measurable space
▾
Measure space
▾
Probability space
▾
Event
Event odds
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a
D1159: Probability space
such that
(i)
$E \in \mathcal{F}$ is an
D1716: Event
in $P$
(ii)
\begin{equation} \mathbb{P}(E^{\complement}) > 0 \end{equation}
The
odds
of $E$ in $P$ is the
D993: Real number
\begin{equation} \frac{\mathbb{P}(E)}{\mathbb{P}(E^{\complement})} \end{equation}
[Comment 0]
: Result
R3719: Probability of complement event
shows that $\mathbb{P}(E^{\complement}) = 1 - \mathbb{P}(E)$. Thus, an equvalent assumption to (ii) is that $\mathbb{P}(E) < 1$.