Let $\mathcal{T}$ be a D86: Topology on $X$.
A D11: Set $\mathcal{S}$ is a subtopology of $\mathcal{T}$ on $X$ if and only if
(1) | $\mathcal{S} \subseteq \mathcal{T}$ (D78: Subset) |
(2) | $\mathcal{S}$ is a D86: Topology on $X$ |
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▼ | Subset |
▼ | Power set |
▼ | Hyperpower set sequence |
▼ | Hyperpower set |
▼ | Hypersubset |
▼ | Subset algebra |
▼ | Topology |
(1) | $\mathcal{S} \subseteq \mathcal{T}$ (D78: Subset) |
(2) | $\mathcal{S}$ is a D86: Topology on $X$ |
▶ | D2018: Subspace topology |